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Impact of floats on water

By N. d e D I V I T I I S AND L. M. d e S O C I O
University of Rome “La Sapienza”, 00184 Rome, Italy

(Received 20 March 2001 and in revised form 4 July 2002)

The impact of a wedge-shaped body on the free surface of a weightless inviscid
incompressible liquid is considered. Both symmetrical and unsymmetrical entries at
constant velocity are dealt with. The differential problem corresponds to the physico-
mathematical model of a distribution of potential singularities and, in particular,
the flow singularities at the ends of the wetted regions are represented by sinks. A
conformal transformation of the flow field is adopted and the unknown intensities
of the discontinuities are found by an optimization procedure, together with the
solution of the nonlinear free-surface problem. The flow separation at a sideslip is
also considered.

1. Introduction
Recently, renewed attention has been given to the hydrodynamic action on floats

during their entry into water. Apart from the challenging mathematical aspects of
the problem, this is due to the renewed interest in large seaplanes in the aircraft
world and in very fast marine vehicles in ship building. One of the first models for
dealing with the hydrodynamics of a seaplane just after its impact on the water
surface was proposed by von Kármán (1929). Much later, significant contributions
to the solution of the slamming problem came from naval architects when the full
picture of a ship slamming into water began to be considered in all its aspects
from the hydrodynamical phenomena to the structural aspects. In this framework
the mechanism of the solid surface interaction with the liquid was experimentally
observed and theoretically modelled, including such effects as air cushion formation,
vortex generation and hydroelasticity.

Faltinsen (1993) presents a good review of the foundations of the slamming problem
and their connections with the seakeeping of vessels, where the stresses induced by
a water impact can play a very important role. On this last point see, for instance,
some recent analytical and numerical solutions in Iafrati et al. (2000) and Carcaterra
& Ciappi (2000).

Due to the complexity of the impact phenomenology, in most studies it is assumed
that the liquid is inviscid and there are no effects of gravity. This means that one of
the characteristic parameters which govern the physics of the problem, namely the
Froude number, is supposed to be much greater than unity, Fr = V∞/gt� 1, and the
Reynolds number Re = V 2∞t/ν → ∞, where V∞ is the entry velocity, g acceleration
due to gravity, t time and ν fluid viscosity. This provides a limit on the validity of the
results of the theory in terms of the time t, which must be shortly after the impact,
and of the impact speed V∞ which must be large.

In most of articles, such as those by von Kármán (1929), Wagner (1932), Dobro-
vol’skaya (1969), Cointe (1991), Zhao & Faltinsen (1993), Faltinsen & Zhao (1997),
the reference shape of the float is assumed to be a wedge that is usually supposed to
have its symmetry plane normal to the free water surface.
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Figure 1. Proposed subdomains.

A number of papers deal with the entry of blunt bodies. When this is the case, a
simple approach is to assume that the first impact is that of a flat plate (Moghishi &
Squire 1981; Cointe 1987; Howison, Ockendon & Wilson 1991). It was shown that
Wagner’s solution for a wedge-shaped body also applies to arbitrary blunt bodies,
provided that the wetted length is properly computed. Also interesting is the fact that
the asymptotic solution for the wedge entry problem is a particular example of the
more general asymptotic approach for blunt bodies. Present trends in naval research
follow more complex procedures than the flat plate approach when dealing with blunt
geometries but they are beyond the scope of this paper.

The symmetric impact of a wedge-shaped float can be divided in two phases.
Initially the point of contact K (figure 1) between the wall and the unperturbed
free surface may move at a velocity VK greater than the speed of sound in the
liquid cw . In particular VK = V∞/ cos α, where α is the wedge semi-angle and V∞ is
the entry velocity. After the very first instants, however, VK slows down to subsonic
values. The supersonic and the subsonic phases are, of course, treated in different
ways. When a supersonic phase occurs it is generally dealt with within an acoustic
approximation (see Skalak & Feit 1966; Korobkin 1992) which is sufficiently accurate
in applications where the Mach number of point K , namely VK/cw , is a little greater
than unity.

The subsonic case of an incompressible fluid, which is the subject of the present
paper, has a series of interesting features associated with the complicated configuration
of the flow field and the nonlinear aspects of the mathematical problem due to the
presence of a free surface.

Figure 1 shows the subdomains into which the water region can be divided accord-
ing to Wagner’s (1932) first ideas, the first quantitatively correct version of Howison
et al. (1991) and then Cointe (1991), Zhao & Faltinsen (1993) and Faltinsen & Zhao
(1997); this figure helps in understanding the physical characteristics of the field. The
sketch also indicates the reasons for some of the approximate solution procedures
which were adopted in the past. In particular one can see the presence of a close field
with sizeable effects on the impact, a far field of negligible perturbations, and two
lateral jets. These jet subdomains, first described by Wagner (1932), Howison et al.
(1991) and then by Cointe (1991) and others, are the regions where portions of the
liquid initially run close to the wall and then lose their continuum fluid identities and
form mists, sprays or, in general, two-phase flows.

When considering the existing literature, recall that solutions to the subsonic in-
compressible problem have appeared frequently, using different either approximate
or numerical approaches. For a constant entry velocity into an inviscid and weight-
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less liquid, approximate analytical solutions have been proposed which are similar
with respect to the time t. In particular the two-dimensional Laplace equation for
the velocity potential was initially solved by Wagner (1932) in the case of a wedge
of very small vertex angle. Much later Dobrovol’skaya (1969) reduced the prob-
lem of the complex potential to a nonlinear singular integral equation which was
solved by a method of successive approximations. Subsequently, a solution to this
equation was found by Zhao & Faltinsen (1993) by a nonlinear boundary ele-
ments method. These authors also pointed some the errors in Dobrovol’skaya (1969)
data.

On the other hand, for large values of α < π/2, Korobkin & Pukhnachov (1988)
used a variational approach, which was later followed by Howison et al. (1991), for an
asymptotic analysis. In addition Fraenkel & McLeod (1997) carried out an asymptotic
analysis for α = π/2− ε, after a conformal transformation of the field. Almost at the
same time Fontaine & Cointe (1997) published a summary of the approximate (for
large α) results and proposed composite solutions which are based on a division of
the flow field analogous to the one in figure 1.

A conformal mapping method, which involves the Wagner’s function, was used by
Hughes (1972) to solve the water entry problem of a wedge by a mixed analytical
and numerical procedure. The method reduces the problem to the calculation of a
mapping function for the hodograph.

The impact may not be symmetrical for different reasons: the symmetry plane of
the wedge is normal to the free surface whereas the entry velocity is not; or the
entry velocity is normal to the free surface and the symmetry plane is not. A few
authors speculated about possible approaches to the situation of a wedge plunging
into the water at a sideslip angle, but no calculated solutions were presented (Wagner
1932; Dobrovol’skaya 1969). The particular case of flow separation was considered
by Zhao, Faltinsen & Aarsnes (1997) in the framework of a simulation study on
the entry of two-dimensional bodies of arbitrary cross-sections. They dealt with the
problem of flow separation from knuckles or fixed separation points on both sides of
symmetric bodies. In particular, the Kutta condition is applied at a separation point.
In the second case of an asymmetric water entry, where a wedge plunges normal to
the free surface but with the velocity vector at an angle with respect to the symmetry
plane, Toyama (1993) presented a solution obtained through a finite element method.

Morgan (1994) gave an explanation of Trefethen & Panton’s (1990) observation
that an impact splash is largely independent of the horizontal speed of the impacting
body, when the horizontal velocity component is comparable with the downward
velocity.

Here, after proposing a model of the wedge slamming problem which is based on a
suitable distribution of the velocity potential, we find excellent solutions of that model
for the flow field following an optimization procedure for solving an algebraic set of
equations. The shape of the free surface and the pressure coefficient distribution along
the wetted walls will be considered in cases of both symmetrical and non-symmetrical
impact. In the latter case, in the presence of sideslip, we obtain the solution in the two
situations of a flow which is either attached to both faces of the float or separates
downstream from the leading edge. Moreover a condition for flow separation will be
introduced.

As in some of the cited references, conformal transformations will be used, although
in our case the external hydrodynamical problem in the semi-infinite physical plane
will be transferred to part of the interior of a circle in the transformed plane. The
solutions will be compared with the existing ones where available.
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2. Analysis of the two-dimensional impact

Let us again consider figure 1. A preliminary observation suggests a reasonable
mathematical model of the physics of slamming, which is based on a distribution of
singularities in a steady potential field. For a constant velocity V∞, an appropriate
transformation of the x′- and y′-coordinates into the dimensionless ones, x = x′/V∞t
and y = y′/V∞t, makes the problem similar with respect to the time t and steady
in the new coordinate plane (x, y). It is convenient to take the body at rest while
the water level moves upward, and this assumption justifies why the calculated iso-ψ
lines, in the present model, end at the free surface.

At the walls the normal component of the flow velocity is zero whereas the
perturbing effects of the body impact vanish in all directions at an infinite distance
from the wedge. Let the free surface be represented in the plane (x, y) by the line
x = x̄(s), y = ȳ(s). The unknown shape of this curve, which makes the differential
problem nonlinear, is to be determined by imposing that the pressure coefficient Cp at
the free surface must be zero and that its perturbation from the unperturbed straight
line goes to zero as s goes to infinity. As we will see, both these conditions can be
satisfied provided that a jet of finite flow rate, also to be determined, is present close
to the body, on each side. A contact iso-ψ line separates the jet from the rest of the
flow. For the case where the flow separates from one side some further considerations
will be presented later.

As already observed in previous works, the potential flow field in an incompress-
ible weightless fluid presents similar solutions in the transformed coordinates x, y,
provided that the velocity potential Φ and the streamfunction Ψ are expressed in the
dimensionless transformed forms ϕ and ψ:

Φ(x′, y′, t) = V 2
∞tϕ(x, y), Ψ (x′, y′, t) = V 2

∞tψ(x, y). (2.1)

Then the velocity (u′, v′) of the flow field, expressed as the gradient of Φ, has the form

(u′, v′) ≡
(
∂Φ

∂x′
,
∂Φ

∂y′

)
= V∞v, (2.2)

with v ≡ (u, v) = (∂ϕ/∂x, ∂ϕ/∂y). The differential problem represented by the Laplace
equation and associated boundary conditions will be solved by taking advantage of
the conformal transformations in the situations which are sketched in figures 2 and
3. Note that, for convenience, we have assumed a circle in the complex plane for the
transformed physical water region.

Figure 2 shows a flow field where the fluid is attached to both sides of the wedge in
an unsymmetrical water entry, of which a symmetrical situation is a particular case.
Figure 3 corresponds to the circumstance where the flow separates from one side
when the float enters at a sideslip angle β.

Let z = x + iy be the physical plane and ζ = ξ + iη the complex plane onto
which z is conformally transformed, with the walls of the wedge becoming arcs
of a circle the centre of which, O, corresponds to the upstream infinity. Let the
complex potential f = ϕ + iψ be defined on ζ. Corresponding points of the two
planes are represented by the same capital letters with a prime for the points on
z. In all cases, points A′ and P ′ refer to the stagnation point and to wedge vertex,
respectively, and so do their transformed representations A and P . Between B and O
and between D and O lie the unknown lines which represent the two branches of the
free surface.
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Figure 2. Conformal mapping (attached flow).
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Figure 3. Conformal mapping (separated flow).

The general model of the flow field corresponds to the sum of a number of
singularities of the velocity potential, the intensities of which are to be determined in
accordance with the physical conditions.

As already mentioned, the conditions on the physical plane z correspond to a
vanishing normal component of the velocity along the lines A′B′ and A′D′, whereas
Cp = 0 at all the points of the free surface, including B′ and D′. In particular, this last
point represents an excellent assumption for small and intermediate deadrise angles
and is still a good approximation for α as low as 9◦.
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The meanings and the locations of the singularities are quite easily understood.
There is a doublet at O for the translational potential. More attention has to be
paid to the singularities which provide the simulation of the lateral jets. In this case
each jet is represented by a sink and a distorted doublet at, for example, point C ′, in
such a way that the necessary jump of the streamfunction ∆ψ is obtained, while the
condition Cp = 0 is satisfied at both B′ and D′. A free vortex at O provides a finite
value of the fluid velocity on the apex of the wedge in the case of sideslip.

With reference to the ζ-plane, the complex potential must satisfy the following
conditions: f must be real on the arc DAB and its real part must monotonically
increase from A to B and from A to D, and go to infinity at C and O. Points A, B,
C and D will be transformed into A′′, B′′, C ′′ and D′′ on the f-plane where a cut is
present on the horizontal axis ϕ with the two branches corresponding to the two sides
of the same iso-ψ line which are divided by the stagnation point A′. Points B and D,
to be determined, represent the traces of the line along which Cp = 0 on the wedge.
Finally, the angles ∆ϑB and ∆ϑD correspond to the arcs BC and CD, respectively.
Since the transformed free-surface lines on ζ are lines which connect O with B and C ,
the transformed domain is the finite region bordered by the unit circle less the sector
between B, O and D.

The complex potential that satisfies all the required conditions will be obtained by
applying the Schwarz–Christoffel method. Let us then assume an expression for f
which is the sum of five terms

f = λ0 + λ1

i

2

(
ζ − 1

ζ

)
+

∆ψ

π
ln

(
1− 1

2
i

(
qζ − 1

qζ

))
+ χ

qζ + 1/qζ

1− 1
2
i(qζ − 1/qζ)

− iΓ ln ζ, (2.3)

where σ0 = π/2(1 + β/α) and q = exp(i(σ0 − π/2)).
The five terms in (2.3) are (a) a constant λ0 which is associated to the presence

of a free surface; (b) a doublet placed at O of intensity λ1 which corresponds to the
translational flow in the physical plane; (c) a sink at C of intensity 2∆ψ = ∆ψB+∆ψD ,
that depends on the angle α and on the sideslip β; (d ) a distorted doublet, also at C ,
that depends on β; (e) a free vortex of intensity Γ on the border at O. χ and Γ are
zero in the symmetric case. The sum of the flow rates of the two jets corresponds to
2∆ψ. When the flow is not symmetric, the two flow rates ∆ψB and ∆ψD are different
and, in terms of the complex potential, this partition is associated with the doublet χ
in (2.3). The presence of Γ at infinity in O does not yield vorticity in the field.

The properties of the complex velocity w = (df/dζ)/(dζ/dz) = u− iv on the physi-
cal plane z need to be considered in order to complete the formulation of the problem
and to recover the shape of the free surface once the problem in the transformed
plane has been solved. In this respect it is useful to express the complex velocity
through the so-called Levi–Civita auxiliary function ω(ζ) (see Cisotti 1921) such that
w(ζ) = exp[−iω(ζ)]. In particular w must be zero at A and its modulus must increase
monotonically from A to B and from A to D, taking a unit value at O, and its real
and imaginary parts must satisfy the condition of null normal velocity on the circle
on ζ.

The auxiliary function ω(ζ) which satisfies the kinematic condition at the wall of
the wedge is obtained by the Schwarz–Christoffel formula

ω(ζ) = β − α+
2iα

π
log

(
ζ − j
1− jζ

)
, j = exp(iσ0). (2.4)
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All the points on the physical plane are then obtained through the quadrature formula

z(ζ) = z(ζ0) +

∫ ζ

ζ0

eiω(ζ) df(ζ)

dζ
dζ (2.5)

that gives the anti-transformation of the ζ-plane onto the physical plane.
Returning to the evaluation of the five unknown constants, reference must be

made to conditions which are meaningful from the physical point of view. First, mass
continuity, momentum balance and energy conservation must be satisfied. Moreover
a condition (to be discussed later) must be imposed on the flow characteristics around
the wedge apex when β 6= 0.

Volume conservation takes into account the contributions of the free-surface dis-
placement from the unperturbed free surface, as the wedge penetrates into the liquid,
and the flow rates of the jets. The free surface is like a material surface along which
the pressure coefficient Cp is zero, that is not perturbed at infinity and that ends at
the contact iso-ψ lines of the lateral jets. Let Ai be the immersed float area. The
pertinent condition is

R1 ≡
∫ ∞
B

x̄(s)
dȳ(s)

ds
ds+

∫ ∞
D

x̄(s)
dȳ(s)

ds
ds+

∆ψB + ∆ψD
2

− Ai = 0. (2.6)

The Bernoulli theorem, following relations (2.1) and (2.2), states that ∂Φ/∂t =
(ϕ − r · v)V 2∞. Then the expression for the pressure coefficient becomes Cp = 1
− v · v − 2(ϕ− r · v), where r is the distance of a point (x, y) of the flow field from
the apex P ′. Therefore the condition to be imposed at all points of the free surface is

1− v · v − 2(ϕ− r̄ · v) = 0, (2.7)

where r̄ is the distance of a point of the free surface (x̄, ȳ) from P ′.
Two further scalar conditions come from the momentum balance and state that

the integral of the pressure distribution on the body surface SB must be equal to the
time-derivative of the momentum, including the effects of the lateral jets,

(R2, R3) ≡
∫
SB

(p− p∞)n dS +
d

dt

∫
S

ρϕn dS + ∆qB′ + ∆qD′ = 0, (2.8)

where ∆qB′ and ∆qD′ are the contributions of the lateral jets. Since the structure of a
jet is modelled as a sink through which mass, momentum and energy disappear then,
in particular, the lost momentum ∆q and energy ∆E can be evaluated by means of
the developed jet approximation

∆q =

∫
∆ψ

(v − r) dψ ≈ ∆ψ(V − r)t,

∆E =
1

2

∫
∆ψ

(v − r) · (v − r) dψ ≈ 1
2
∆ψ(V − r)2,

where t is the unit vector parallel to the wedge side. At small deadrise angle δ the
jet approximation is satisfied in the limit δ → 0 while at δ → 90◦ both the exact and
the approximate expressions give ∆q → 0, ∆E → 0, since ∆ψ → 0. At intermediate
deadrise angle the jet approximation might involve greater errors but the calculation
performed and presented here give results which are in excellent agreement with the
existing data of Zhao & Faltinsen (1993).
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With reference then to (2.8) one has

∆qB′ =

∫
∆ψB′

(v − r) dψ ≈ ∆ψB′(VB′ − rB′)tB′

and

∆qD′ =

∫
∆ψD′

(v − r) dψ ≈ ∆ψD′(VD′ − rD′)tD′ ,
where, as before, tB′ and tD′ are the local tangent unit vectors, and rB′ and rD′ are the
distances from the apex of the wedge to the points B′ and D′, respectively.

Note that the derivative of the momentum for a constant entry velocity is due to the
variation of the apparent additional mass. Note also that in the proper dimensionless
similarity variables rB′ and rD′ are also the velocities of the points B′ and D′.

The lateral surface of the wedge depends on ∆ϑB and ∆ϑD through

SB(∆ϑB,∆ϑD) =

∫ 2π−σ0−∆ϑD

σ0+∆ϑB

∣∣∣∣dfdζ

∣∣∣∣ 1

|w| dϑ,

and S is where SB meets the free surface.
The energy conservation takes into account the presence of the free surface and

of the jets and equates the work of the hydrodynamic force on the body to the time
derivative of the kinetic energy:

R4 ≡
∫
SB

(p− p∞)V∞ · n dS − 1

2

d

dt

∫
S

ρϕ∇ϕ · n dS + ∆EB′ + ∆ED′ = 0, (2.9)

where, as before,

∆EB′ =
1

2

∫
∆ψB′

(v − r) · (v − r) dψ ≈ 1
2
∆ψB′(VB′ − rB′)2

and

∆ED′ =
1

2

∫
∆ψD′

(v − r) · (v − r) dψ ≈ 1
2
∆ψD′(VD′ − rD′)2

are the kinetic energy terms which are lost through the lateral jets.
It is worth remarking that since the expressions for ∆q and ∆E were obtained under

the approximation of a developed jet, they do not allow a fully detailed description
of the flow structure near the walls.

Whereas for β = 0 the stagnation point A′ falls on the apex, two possible choices
can instead be made for β 6= 0: either point A′ is still coincident with the apex
(figure 2) and no separation occurs, or the free surface separates downstream from
the apex, and A′ moves along the upstream wet side of the wedge (figure 3). In both
cases one has the further condition df/dζ = 0 in ζA, i.e.

R5 ≡ Γ − λ1 cos σ0 +
∆ψ/π cos(σ0 + ε) + 2χ

1 + sin(σ0 + ε)
= 0, (2.10)

where ε = σ0 − π/2. In the expressions for R1 to R5 above a few auxiliary unknowns
appear, namely the angles ∆ϑB , ∆ϑD and the jumps of the streamfunction ∆ψB′ and
∆ψD′ .

Let us discuss the attached case first. The conditions

R6 ≡ CpB′ = 0, R7 ≡ CpD′ = 0 (2.11)
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give the values of ∆ϑB and ∆ϑD and the total flow rate of the two jets 2∆ψ is divided
in such a way that

R8 ≡ 2∆ψ − (∆ψB′ + ∆ψD′) = 0. (2.12)

As has been seen, in the case of attached flow the volume flow rates of the lateral
jets correspond to two jumps of the streamfunction. The Bernoulli equation for each
contact iso-ψ line which comes from infinity gives

R9 ≡ ∆ψB′

∆ψD′
− V 2

B′ − 1

V 2
D′ − 1

= 0, (2.13)

where VB′ and VD′ are evaluated as |w(ζB)| and |w(ζD)| respectively, since the poten-
tial time derivatives are recognized to be (∂ϕ/∂t)|B′ = const ∆ψB′ and (∂ϕ/∂t)|D′ =
const ∆ψD′ .

When we consider the case of a separated flow, the problem reduces to that of a
flat plate entering the water at an angle 2π − (α+ β). One of the two streamfunction
jumps is zero and instead of (2.13), the condition that the apex of the wedge is a
point of separation is applied:

R9 ≡ df(ζP )

dζ
= 0. (2.14)

We finally turn our attention to the shape of the free surface in the physical plane.
The kinematic condition on that surface is

dr

ds
=

r − v√
(x− u)2 + (y − v)2

, (2.15)

where (2.7) must be satisfied also. The vector equation (2.15) expresses the fact that the
free surface is always made up of the same particles. Equation (2.15) when combined
with (2.7) confirms that the arc distance between two particles on the surface is
constant (see, for instance, Birkhoff & Zarantonello 1957; Mackie 1962).

Introducing the complex notation we obtain, in the transformed variables, the
quadrature equations from (2.15) and (2.7):

z(ζ) = zi +

∫ ζ

ζi

z(ζ ′)− w∗(ζ ′)√
(x(ζ ′)− u(ζ ′))2 + (y(ζ ′)− v(ζ ′))2

|zζ(ζ ′)| d|ζ ′| (i = B′, D′), (2.16)

where the integrals are restricted to the paths on ζ that correspond to Cp = 0. The
most difficult part of the differential problem, i.e. the determination of the shape of
the free surface, is thus formally reduced to the integration of expressions (2.16) along
the paths along which Cp = 0.

3. The algorithm
Expressions (2.6)–(2.13) (or (2.6)–(2.12), (2.14)) represent an algebraic system with

nine unknown parameters. Among the various solution methods, a speedy and easy
way was adopted which corresponds to solving the problem in the form of a residual
function

R(λ0, λ1,∆ψ, χ, Γ ,∆ψB,∆ψD,∆ϑB,∆ϑD) =

9∑
i=1

R2
i

which is made zero through an optimization procedure. In particular the optimization
method by Davidon, Fletcher and Powell was adopted which is a numerical code in
the widely known NAG library (Numerical Algorithms Group 1991).
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In detail, the steps of the algorithm to obtain the solution in the physical plane are
as follows.

(i) The analytical form of the complex potential (2.3) that satisfies all the required
boundary conditions is assumed.

(ii) As a first guess values of all the nine parameters λ0, λ1,∆ψ, χ, Γ ,∆ψB,∆ψD,∆ϑB,
∆ϑD are chosen. Therefore the complex potential velocity is completely defined in the
ζ-plane.

(iii) All the points on the physical plane are calculated via (2.5), so that a first
approximation to the solution which describes the flow around the wedge is evaluated.

(iv) If the solution so obtained satisfies the algebraic set and makes function R
go to zero, the procedure is terminated and the physical solution has been found.
Otherwise, the optimization process will update the nine parameters in such a way
that R is minimized and the procedure will be repeated from step (iii).

(v) Once the parameters which comprise
∑9

i=1 R
2
i = 0 are evaluated, next step is

to calculate the shape of the free surface through integration of (2.16). To this end,
in this work a routine fourth-order Runge–Kutta method was adopted.

4. Results
Some results will now be presented and discussed. First, some solutions obtained

in this paper were substituted, for comparison, into the singular integral equation
obtained in Dobrovol’skaya (1969) for the symmetric case and it was solved by a finite
difference method. In particular, for β = 0, we considered the cases where α = 60◦
and 70◦ which were thought to represent good tests for the solution procedure. In
fact these intermediate values of α correspond to situations which are far from the
limits where the existing approximate solutions are accurate enough. Therefore our
solutions were substituted into Dobrovol’skaya’s integral equation at a number of
points of the liquid domain and of the wetted surface and the results with negligible
differences corresponded to the data reported in Dobrovol’skaya (1969) as corrected
by Zhao & Faltinsen (1993).

After proving the reliability of the method, the situations considered in Zhao &
Faltinsen (1993) which were solved there by a nonlinear boundary elements method
were dealt with by the present approach. Again, an excellent agreement was found
between the two procedures, apart from negligible numerical errors. The results for
the cases cited above are given in figure 4 where some iso-ψ lines are sketched both in
the physical and in the transformed plane. The calculated Cp vs. x along the walls is
shown in figure 5. The calculations proved that the present analysis provides excellent
solutions in a very simple and fast way over the entire range of α, the case α = 0
and α = 90◦ being excluded. At smaller deadrise angles than those in figures 4 and
5, a comparison was carried between our Cp results and those shown in Zhao &
Faltinsen (1993) for α = 86◦. In this case we note a maximum deviation of about 10%
which occurs at the wall. Table 1 presents a comparison of the results of the present
procedure with those obtained by a similarity solution, an asymptotic approach and
the boundary element method. In addition the calculated values of the kinetic energy
of the flow and of the jets are shown. One can see the increasing importance of the
momentum and energy associated with the jets as α increases.

On the specific point of the energy balance for the impact of a symmetric body, a
general discussion appears in Molin, Cointe & Fontaine (1996). In accordance with
this last reference the energy going into the jets tends to be equal to the kinetic energy
of the bulk of the fluid as the deadrise angle decreases.
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Cpmax (xmax − 1)

α (deg.) Simil. Asymp. BE Present results Simil. Asymp. BE Present results

50 3.266 3.50 3.26 3.5260 0.2866 0.5708 0.245 0.2687
60 6.927 7.40 6.94 7.1127 0.4243 0.5708 0.400 0.3655
65 10.691 11.35 10.9 10.622 0.4709 0.5708 0.443 0.4257
70 17.774 18.63 18.2 17.370 0.5087 0.5708 0.488 0.4728
75 33.271 34.37 32.8 32.654 0.5361 0.5708 0.533 0.5158
80 77.847 79.36 80.2 78.805 0.5556 0.5708 0.555 0.5619
82.5 140.587 142.36 148.3 146.422 0.5623 0.5708 0.558 0.5691
86 503.030 504.61 521.4 512.324 0.5695 0.5708 0.571 0.5708

Fx

α (deg.) Simil. Asymp. BE Present results Ekin Ejets/Ekin

50 5.477 8.322 5.31 5.7154 3.541 0.6140
60 14.139 18.747 13.9 16.168 9.424 0.7154
65 23.657 29.765 23.7 25.829 14.448 0.7877
70 42.485 50.639 43.0 44.020 23.714 0.8562
75 85.522 96.879 85.5 83.841 43.756 0.9161
80 213.98 231.973 220.8 202.125 104.230 0.9622
82.5 399.816 423.735 417.9 401.343 192.78 0.9788
86 1503.638 1540.506 1491.8 1487.321 744.14 0.9987

Table 1. Dimensionless slamming parameters vs. α. Comparison of maximum pressure coefficient
and its location xmax, and of vertical force Fx as obtained in a similar solution, an asymptotic
analysis, a nonlinear boundary element method BE and the present procedure. Ekin, the kinetic
energy of the bulk of the fluid, and Ejets, kinetic energy lost in the jets are also shown. Data for all
but the present results are from Zhao & Faltinsen (1993).

When the case with a sideslip is considered one finds that the solution for the
attached case is not always possible. In particular, a limit value of β exists for each α,
namely β∗, such that for β > β∗ the only possible solution corresponds to separated
flow. In order to obtain β∗ from (2.6)–(2.13) we calculated the Jacobian ∂Ri/∂qj
corresponding to the solutions of the problem. Here qj represents the generic variable
on which R depends. Then β∗ is obtained when the determinant of ∂Ri/∂qj vanishes.
As expected and with reference to figure 6 we note that β∗ increases with α.

Figure 7 shows the solutions of the flow field in the case of sideslip β = 4◦,
for α = 60◦ and 70◦, when the flow is attached to both walls. The corresponding
distributions of the pressure coefficient are given in figure 8 together with the results
for the symmetric case. On the windward wall the free surface rises higher than on
the leeward wall and on the leeward side the pressure coefficient reaches a maximum
value which is close to but greater than that of the symmetric case. When the flow
separates from the wedge then, as already mentioned, the problem reduces to that
of a flat plate which enters the liquid at an angle β. Figures 9 and 10 show the
flow field for β = 4◦ and α = 60◦, and the corresponding distribution of the pressure
coefficient, respectively. In comparison with the symmetric case both the maximum
value Cpmax and the entire Cp distribution show noticeable differences. Furthermore the
free surface on the downstream side and close to the wall falls below the unperturbed
surface.

When the inertia force is calculated from the displaced virtual mass, one obtains
values which approximate within a 15% error the von Kármán (1929) results which
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0 0.5 1.0 1.5 2.0

5

10

15

20

x

Cp

Figure 5. Symmetrical pressure distribution, α = 60◦ (continuous line), α = 70◦ (dashed line).

0 30 60 90

0

20

40

60

α (deg.)

β
∗  

(d
eg

.)

Figure 6. Values of the sideslip angle for the onset of separation β∗ vs. the wedge angle α. Above
the line the flow separates from one side.
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are evaluated with reference to the mass contained in a cylindrical volume having
diameter equal to tan α.

Figure 10 shows a comparison between the pressure coefficient distributions on
the wall for α = 60◦ and β = 10◦ as calculated by our method and by von Kármán’s
approximation. In table 2, for α = 60◦ and at different β, the total force on the wet
side of the wedge is reported together with the corresponding von Kármán values.
Higher-order approximations of the flat-plate virtual mass, such as the one discussed
in Meyerhoff (1970), are not considered here.

5. Conclusion
We conclude by summarizing the characteristics of the present approach. The

Laplace equation is supposed to hold, after the introduction of similar variables
gives a steady expression for the flow field. Then the physical aspects are modelled
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β (deg.) Present results von Kármán’s results

4 5.415 4.692
6 5.382 4.664
8 5.336 4.620

10 5.277 4.573

Table 2. Values of the total force on the wet side of the wedge for a separated flow, α = 60◦.

0 0.5 1.0–1.0 –0.50 2 4 6

0

1

2

–1

0

–0.5

–1.0

AC

B
x

BH

AH

y η

DH
1.0

0.5

ξ

D

–6 –4 –2

Figure 9. Separated flow field. α = 60◦ and β = 10◦: iso-ψ line distributions in the physical and in
the transformed plane.
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Figure 10. Pressure distribution for the separated flow, α = 60◦, β = 10◦: von Kármán’s theory
(dashed line), present method (continuous line).

by a suitable choice of singularities of the potential function in a translational
potential. Following a conformal transformation, the main characteristics of the flow
in the transformed plane are found by solving a system of algebraic equations for
the singularities by an optimization procedure and the shape of the free surface is
formally obtained by quadrature, although an easy way to practically compute it
is based on a Runge–Kutta method. An important aspect of the model is the fact
that the laws of mass continuity, momentum balance and energy conservation are
enforced. The solutions were tested against existing data with excellent results. The
method can be applied to the entire range of wedge angles, except for α = 0 and
α = 90◦, and takes easily into account a possible sideslip with and without separation.

The authors are indebted to the referees for their useful comments. This work was
partially supported by the Italian Ministry for the Universities and Scientific and
Technological Research.
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